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Design Procedure for Inhomogeneous
Coupled Line Sections

INGO E. LOSCH, MEMBER, IEEE, AND JOHANNES A. G. MALHERBE, SENIOR MEMBER, IEEE

Abstract —This paper presents design formulas and a procedure for the

design of inhomogeneous coupled line sections as an approximation to a

series open circuited stub for application in the realization of microwave

pseudo high-pass filters. The accuracy of the design equations is evalnated

through the design and test of a seventh-order filter and it is fouud that the

forrmrlatiou predicts the performance of the section well beyond the

quarter-wave frequency.

I. INTRODUCTION

w IDE-BAND, high-selectivity pseudo high-pass

filters in suspended stripline have become extremely

popular due to their excellent performance and very small

size [1], [2]. These filters all make use of series open circuit

stubs, and in the design they are approximated by short,

overlay-coupled line sections, as shown in Fig. 1. The

extent to which the filter performance tracks the design

value is obviously a function of the correctness of this

approximation.

In this paper, new design equations are derived that

model the coupled line section almost exactly up to the

quarter-wave frequency. The effect of the fringing capaci-

tance from the open ends of the coupled lines is also

included in the design.

A trial seventh-order filter was designed and tested. The

filter gave excellent performance with the passband ex-

tending from 2 GHz to 9.5 GHz.

II. DERIVATION OF THE DESIGN EQUATIONS

The basis of the approximation to be used in this paper

is the matching of the ABCD parameters of the two

sections at two separate frequencies. Zysman and Johnson

[3] give the ABCD parameters of an inhomogeneous cou-

pled line section as

Zoe cot lfle+ Zoo cot !90
A=D=

ZoeCsce, + Zoocsc !90
(1)

Z;e + Z;. – 2zo=zoo(cot e,cot 00 + ~sc (3,CSC00)
B=j

2(zoecsc 19e– ZOocsc 6.)

(2)

2j
c=

Zoe Csc19,+ zoo Csc190
(3)
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Fig. 1. Overlay-coupled line section.

where
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c~eff e
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130=—
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(4)

(5)

The ABCD parameters of a series open circuited stub are

given by

A=D=l (6)

– jZc
B=—

tan 0
(7)

C=o. (8)

Fig. 2 compares the variation of the ABCD parameters

versus frequency for the stub and the coupled line section.

The parameters A = D, B, and C are compared separately

in Fig. 2 in parts (a), (b), and (c), respectively. It is obvious

from the graphs that the latter can be made to approxi-

mate the stub quite closely up to the quarter-wave reso-

nant frequency of the stub.

As A = D, there are in effect three parameters to match.

In a typical cross section, for the coupled lines, the line

width is usually much larger than the spacing between the

two lines, as shown in Fig. 1. Consequently, the even-mode

impedance of the pair of coupled lines is very much larger

than the odd-mode impedance, b >> S, Zo, >> ZOO.If, fur-

thermore, the coupled line section is made much shorter

than the corresponding series stub, from (1) to (5) we find

that A= D=land C=O.

The remaining parameter is matched for the two ele-

ments at two frequencies, namely the cutoff frequency, ~C,

of the high-pass filter to be realized and the resonant

frequency of the stub to be approximated, fo. Only two

frequencies can be used, because that is the number of

orders of freedom available in the expressions for B. These
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Fig. 2. Variation of the ,4BCD parameters of the coupled line section
and the open series stub with frequency. (a) ,4= D. (b) B. (c) C.

two frequencies can be chosen arbitrarily; however, the

two sections will be identical where the choice is made.

Choosing the band edge of the filter ensures that there

will be no bandwidth errors in the filter design. The choice

of the quarter-wave frequency of the stub, however, is

somewhat arbitrary, although very close to optimal. This is

because making the two responses intersect at the inflec-

tion point of the stub response ensures the same type of

slope over the whole of the first 90° of the parameter

responses.

Finally, we find that

B=O at f.
– jZ,

B=— at fc.
mn oc

For the calculation of the even- and odd-mode imped-

ances, we first approximate the inhomogeneously filled

cross section by a uniformly air-filled cross section, as

shown in Fig. 3. Under the circumstances of Zoe >> ZOO,
this is a good approximation, and enables the equations of

(a)

~ b’=b-s(l-l\&F)
I

yf=””

er=l

(b)

Fig. 3. (a) Crosssectionof coupled suspendedstriplines. (b) Equivalent
homogeneouscouplei line section.

Cohn [4] for lines in air to be used. For the equivalent

cross section, the even- and c)dd-mode

given by

v
Zoe =

[

w/b’
2

1 – s’/b’
+ cfe/c

1
n

impedances are

(9)

zoo =

[

w/b’ 1
(lo)

2 + w’/s’+ cfo/6
1 – s’/b’

where

cfe/E = 0.4413+ ~
T [11 s’/b’

in ——
1 – s“/b’

+ in Z
1 – s’/b[ S’ 1

(11)

ceffe = 1 (13)

Ceffo= cr. (14)

If more accurate values for’ the odd-mode impedance

and the effective dielectric constant are needed, formulas

for covered microstrip, as given, for instance, by March [5],

can be used.

111. DESIGN EQUATIONS WITHOUT INCLUSION OF

END EFFIECT

For any transmission line that is abruptly terminated,

especially in an open circuit, the resonant length is a

function of the stray capacitance terminating the line. As a

first-order approximation, we neglect this contribution,

and under the condition 1<< A,/4, we make the approxi-

mation

tan fl=sint~=d. (15)

At f = f.. B = O. Substitutirw [15). (4). and (5) into (2)
J .“, “., . . . . . . .,



1188 IEEETRANSACTIONSON ~lCROXV~VETHEORY AND TECH?JJQL-ES. VOL. 36, NO. ~. JULt” 1988

and solving for 1 yields the expression o
A..

---
T T r ---- ----- t 1

At f = f,, (7) gives another expression for B. Once again

using the approximation (15) in (2) gives

– Z, = 1 .O#O(Z~~ + Z~O) ‘4zOezOo

— ~J
Oozoe– Oezoo “

(17)
tan OC

Substituting (16) into (4) and (5), and the resulting equa-

tions into (17), we obtain, using the approximation Zo. >>

z 007

z:(fc/fo)2&

‘“’zo” = tan2t9C[l – (.fC/jo)’]2

tu-td if we substitute (9) and (10) into (18), we find

— y+~~
~/b’ =

2x

where

1

x= (.s’/b’)[l-(i/b’)]2

(~ ’/b’) (C~O/t) + (cfe/~)

y= (,s’/’)[l[(i (b/)])]

(18)

(19)

(20)

(21)

q2 tan20C[l - (.fc/fo)2]2 (22)

z = (cfe/c)(c’’o/~) –
4z:(fc/’.fo)2& “

IV. DESIGN EQUATIONS INCLUDING END EFFECT

If the open circuit end effect is included, h becomes

impossible to obtain expressions for the line widths and

lengths of the coupled line sections in closed form. At the

same time, the fringing capacitances that terminate the line

are different for the odd and even modes, so that there is

no simple method of compensating for the end effect. The

procedure followed here is to include the effects of the

fringing capacitance in the effective dielectric constant for

the two modes, thereby effectively changing the resonant

lengths in the two modes.

The effective length of the line in each mode is increased
by a length Al such that the total capacitance of the new,

compensated length of line is the same as the original line
with end effect. Thus,

Al,Co./C = WCf~/C (23)

AI OCOo/e = WC~O/C. (24)

The effective dielectric constants for the two modes are

now given by, for i G {e, o},

(25)

I T I I I } I
/1 4
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Fig. 4. Theoretical and measured return loss and transmission loss
versus frequency for a coupled line section.

Substituting Co, = q/Zo,, we find

[i- 1

2
w cf, /c

C:ff, = Eeff, + –—zoz .
Iq

(26)

The value for ~.ff. can once again be calculated from [sl~
while ~~ff,=l.

We now obtain the values for 1 and w by solving

numerically the equations for the parameter B at the two

matching frequencies, ~c and fo, using(4), (5), and (9)–(12).

At ~ = ~o:

Z:, + .Z;O – 2Zo,ZoO(c0t decot dO+ CSC deCSC 6.) = O. (27)

At f = fc:

Z;e + Z:. – q),-zoo(cot Oecotdo+ Csc @ecscdo) – -z..—
2( Zoecsc 0, – zoom ~o) tan e “

(28)

The parameter C should ideally be zero; unfortunately

this is not the case, and this would limit the useful range to

substantially below the quarter-wave resonant frequency of

the filter.

This problem can be overcome by forcing the reflection

coefficient of the element to zero as described below. The

reflection coefficient can be rewritten in terms of the chain

parameters as

B – Z;C
S,l =

2AZ0 + B + Z;C “
(29)

If we now set (27) to zero at a frequency slightly lower

than ~o, we can ensure that at ~0, B = %C, and therefore

ensure that Sll = O, as is the case for the series open circuit

stub. This choice unfortunately results in an uneven pass-

band VSWR performance when applied to filters; conse-

quently, the frequency at which B = O is chosen slightly

higher than the frequency at which S11= O at f = fO to

ensure an even VSWR across the passband of the filter.

V. EXPERIMENTAL VERIFICATION

In order to verify the design procedure described above,

a number of coupled line sections were manufactured and

measured. Fig. 4 shows the insertion loss response of a
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Fig. 5. Design of a seventh-order filter. (a) Low-pass prototype. (b)
Prototype after transformation to high-pass and scaling. (c) Final
element values.

typical section, of 20=60 L?, with a cutoff frequency of

fc = 2 GHz, and center frequency of f,= 6 GHz. The

substrate used was RT Duroid of 0.005 inch thickness, and

dielectric constant c,= 2.22. Excellent agreement between

the theoretical predi@ion and the calculated values is

noted.

VI. TRIAL FILTER DESIGN

A filter was designed to verify the application of the

design procedure to filter applications. The filter was a

seventh-order generalized Chebyshev prototype [6] with

Amz50dB, return loss more than 20dB, fo=6GHz. and

(a) (b)

Fig. 6. Artwork of the filter before etchng. (a) Upper masks. (b) Lower
masks.
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Fig. 7. (a) Transmnsion response ok seventh-orde rfdter. (b) Passband
expanded. (c) Return loss.
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fc = 2 GHz. The prototype filter is shown in Fig. s(a), and
the high-pass transformed network after frequency and

impedance scaling, in Fig. 5(b). The series open circuited

stubs are approximated by the short coupled line sections

described above, and the shunt resonators as a cascade of

two unit elements, using the transform described by

Minnis [7]. The final element values are shown in Fig. 5(c).

The artwork for the etching of the filter is shown in Fig.

6. Because of the low impedance of the second unit ele-

ment in the resonators, these unit elements were realized irk

microstrip rather than suspended stripline, which was used

in the rest of the filter. This microstrip line implementation

was only necessary because of the extremely wide design

bandwidth. With narrower bandwidths these impedances

also become realizable in suspended stripline. The trans-

mission response of the filter is given in Fig. 7(a), as

compared with the ideal theoretical response. The varia-

tion of return loss versus frequency is shown in Fig. 7(c).

The agreement in performance is excellent well beyond the

center frequency of the filter. No optimization or subse-

quent tuning was done on the filter after assembly.

The difference between the theoretical response and the

measured results can be partly attributed to manufacturing

tolerances, but the main discrepancy at the high frequency

end is due to T junction effects which were not included in

the model of Fig. 5(c).

VII. CONCLUSIONS

A procedure for the design of inhomogeneous coupled

line sections has been presented The approach is to equate

the performance of the coupled line section to that of a

series stub at two frequencies, ‘thereby ensuring very good

performance over a wide portion of the band. The test

samples of coupled lines performed very closely to what

was theoretically expected.

A trial filter was constructed using the coupled line

design procedure; this filter performed extremely well,

giving a useful passband to almost the upper cutoff

frequency. The power of the design procedure is illustrated

by the fact that the filter performance obtained was without

any optimizatio’n of element values or tuning whatsoever.
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